Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
J Nat Prod ; 87(4): 764-773, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38423998

RESUMO

The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 µgmL-1) and Gram-positive (MIC = 2-8 µgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 µgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/síntese química , Klebsiella pneumoniae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
2.
Acc Chem Res ; 57(3): 399-412, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277792

RESUMO

ConspectusThe unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment.Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling "silver bullet" will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and "combination therapies" where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa.The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.


Assuntos
Incrustação Biológica , Produtos Biológicos , Desinfetantes , Animais , Humanos , Química Farmacêutica , Organismos Aquáticos , Incrustação Biológica/prevenção & controle , Produtos Biológicos/farmacologia
3.
Foods ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002130

RESUMO

3,6,7-trimethyllumazine (Lepteridine™) is a newly discovered natural pteridine derivative unique to Manuka (Leptospermum scoparium) nectar and honey, with no previously reported biological activity. Pteridine derivative-based medicines, such as methotrexate, are used to treat auto-immune and inflammatory diseases, and Manuka honey reportedly possesses anti-inflammatory properties and is used topically as a wound dressing. MMP-9 is a potential candidate protein target as it is upregulated in recalcitrant wounds and intestinal inflammation. Using gelatin zymography, 40 µg/mL LepteridineTM inhibited the gelatinase activities of both pro- (22%, p < 0.0001) and activated (59%, p < 0.01) MMP-9 forms. By comparison, LepteridineTM exerted modest (~10%) inhibition against a chromogenic peptide substrate and no effect against a fluorogenic peptide substrate. These findings suggest that LepteridineTM may not interact within the catalytic domain of MMP-9 and exerts a negligible effect on the active site hydrolysis of small soluble peptide substrates. Instead, the findings implicate fibronectin II domain interactions by LepteridineTM which impair gelatinase activity, possibly through perturbed tethering of MMP-9 to the gelatin matrix. Molecular modelling analyses were equivocal over interactions at the S1' pocket versus the fibronectin II domain, while molecular dynamic calculations indicated rapid exchange kinetics. No significant degradation of synthetic or natural LepteridineTM in Manuka honey occurred during simulated gastrointestinal digestion. MMP-9 regulates skin and gastrointestinal inflammatory responses and extracellular matrix remodelling. These results potentially implicate LepteridineTM bioactivity in Manuka honey's reported beneficial effects on wound healing via topical application and anti-inflammatory actions in gastrointestinal disorder models via oral consumption.

4.
Viruses ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38005879

RESUMO

Norovirus is the leading cause of viral gastroenteritis worldwide, and there are no approved vaccines or therapeutic treatments for chronic or severe norovirus infections. The structural characterisation of the norovirus protease and drug development has predominantly focused upon GI.1 noroviruses, despite most global outbreaks being caused by GII.4 noroviruses. Here, we determined the crystal structures of the GII.4 Sydney 2012 ligand-free norovirus protease at 2.79 Å and at 1.83 Å with a covalently bound high-affinity (IC50 = 0.37 µM) protease inhibitor (NV-004). We show that the active sites of the ligand-free protease structure are present in both open and closed conformations, as determined by their Arg112 side chain orientation. A comparative analysis of the ligand-free and ligand-bound protease structures reveals significant structural differences in the active site cleft and substrate-binding pockets when an inhibitor is covalently bound. We also report a second molecule of NV-004 non-covalently bound within the S4 substrate binding pocket via hydrophobic contacts and a water-mediated hydrogen bond. These new insights can guide structure-aided drug design against the GII.4 genogroup of noroviruses.


Assuntos
Fármacos Anti-HIV , Infecções por Caliciviridae , Norovirus , Humanos , Peptídeo Hidrolases/metabolismo , Norovirus/metabolismo , Endopeptidases/metabolismo , Domínio Catalítico , Fármacos Anti-HIV/metabolismo , Genótipo , Filogenia
5.
Org Biomol Chem ; 21(46): 9150-9158, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37822146

RESUMO

A photoinitiated thiol-ene "click" reaction was used to synthesize S-lipidated collagen model peptide amphiphiles. Use of 2-iminothiolane provided an epimerization-free thiol handle required for thiol-ene based incorporation of lipid moieties onto collagen-based peptide sequences. This approach not only led to improvements in the triple helical characteristics of the resulting collagen model peptides but also increased the aqueous solubility of the peptide amphiphiles. As a result, this methodology holds significant potential for the design and advancement of functional peptide amphiphiles, offering enhanced capabilities across a wide range of applications.


Assuntos
Peptídeos , Compostos de Sulfidrila , Sequência de Aminoácidos , Colágeno , Química Click
7.
Inorg Chem ; 62(35): 14310-14317, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37611203

RESUMO

Ruthenium piano-stool complexes have been explored for their anticancer activity and some promising compounds have been reported. Herein, we conjugated a derivative of plecstatin-1 to peptides in order to increase their cancer cell targeting ability. For this purpose, plecstatin-1 was modified at the arene ligand to introduce a functional amine handle (3), which resulted in a compound that showed similar activity in an in vitro anticancer activity assay. The cell-penetrating peptide TAT48-60, tumor-targeting neurotensin8-13, and plectin-targeting peptide were functionalized with succinyl or ß-Ala-succinyl linkers under standard solid-phase peptide synthesis (SPPS) conditions to spatially separate the peptide backbones from the bioactive metal complexes. These modifications allowed for conjugating precursor 3 to the peptides on resin yielding the desired metal-peptide conjugates (MPCs), as confirmed by high-performance liquid chromatography (HPLC), NMR spectroscopy, and mass spectrometry (MS). The MPCs were studied for their behavior in aqueous solution and under acidic conditions and resembled that of the parent compound plecstatin-1. In in vitro anticancer activity studies in a small panel of cancer cell lines, the TAT-based MPCs showed the highest activity, while the other MPCs were virtually inactive. However, the MPCs were significantly less active than the small molecules plecstatin-1 and 3, which can be explained by the reduced cell uptake as determined by inductively coupled plasma MS (ICP-MS). Although the MPCs did not display potent anticancer activities, the developed conjugation strategy can be extended toward other metal complexes, which may be able to utilize the targeting properties of peptides.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Rutênio/farmacologia , Antineoplásicos/farmacologia , Peptídeos , Aminas
8.
Biochemistry ; 62(17): 2669-2676, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531216

RESUMO

Glycocin F (GccF), a ribosomally synthesized, post-translationally modified peptide secreted by Lactobacillus plantarum KW30, rapidly inhibits the growth of susceptible bacteria at nanomolar concentrations. Previous studies have highlighted structural features important for its activity and have shown the absolute requirement for the Ser18 O-linked GlcNAc on the eight-residue loop linking the two short helices of the (C-X6-C)2 structure. Here, we show that an ostensibly very small chemical modification to Ser18, the substitution of the Cα proton with a methyl group, reduces the antimicrobial activity of GccF 1000-fold (IC50 1.5 µM cf. 1.5 nM). A comparison of the GccFα-methylSer18 NMR structure (PDB 8DFZ) with that of the native protein (PDB 2KUY) showed a marked difference in the orientation and mobility of the loop, as well as a markedly different positioning of the GlcNAc, suggesting that loop conformation, dynamics, and glycan presentation play an important role in the interaction of GccF with as yet unknown but essential physiological target molecules.


Assuntos
Anti-Infecciosos , Peptídeos , Peptídeos/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Estrutura Secundária de Proteína , Anti-Infecciosos/farmacologia
9.
RSC Chem Biol ; 4(8): 533-547, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37547456

RESUMO

Viral infections are one of the leading causes of acute morbidity in humans and much endeavour has been made by the synthetic community for the development of drugs to treat associated diseases. Peptide-based enzyme inhibitors, usually short sequences of three or four residues, are one of the classes of compounds currently under development for enhancement of their activity and pharmaceutical properties. This review reports the advances made in the design of inhibitors targeting the family of highly conserved viral proteases 3C/3CLpro, which play a key role in viral replication and present minimal homology with mammalian proteases. Particular focus is put on the reported development of P1 glutamine isosteres to generate potent inhibitors mimicking the natural substrate sequence at the site of recognition.'

10.
Chem Sci ; 14(29): 7782-7817, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502317

RESUMO

Peptide and protein selective modification at tyrosine residues has become an exploding field of research as tyrosine constitutes a robust alternative to lysine and cysteine-targeted traditional peptide/protein modification protocols. This review offers a comprehensive summary of the latest advances in tyrosine-selective cleavage, functionalization, and conjugation of peptides and proteins from the past three years. This updated overview complements the extensive body of work on site-selective modification of peptides and proteins, which holds significant relevance across various disciplines, including chemical, biological, medical, and material sciences.

11.
Org Biomol Chem ; 21(30): 6134-6140, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37462413

RESUMO

Nucleoside analogues such as the antiviral agents galidesivir and ribavirin are of synthetic interest. This work reports a "one-pot" preparation of similar fleximers using a bifunctional copper catalyst that generates the aryl azide in situ, which is captured by a terminal alkyne to effect triazole formation.

12.
Org Biomol Chem ; 21(29): 6008-6017, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435924

RESUMO

Portimines A and B are spirocyclic imine natural products, which display remarkable anticancer, anti-HIV, and antifouling activities. Herein, we report a facile synthesis of the spirocyclic core of portimines A and B. Our strategy utilized a scalable Diels-Alder addition of a 2-bromo-1,3-butadiene to a symmetrical malonate dienophile, coupled with a diastereoselective lactonization of the resulting malonate that enabled differentiation of the two carbonyl groups. This approach overcame issues encountered in previous studies focused on the use of exo selective Diels-Alder reactions, by programming formation of the key stereodiad of the spiroimine fragment into the diastereoselective lactonization event, rather than the cycloaddition step. Elaboration of the key lactone intermediate afforded a functionalized spirolactam fragment as a useful intermediate en route to the portimines. Importantly, a key alcohol intermediate could be resolved by enzymatic resolution, thereby providing an asymmetric route to the spiroimine fragment of portimines A and B.


Assuntos
Produtos Biológicos , Compostos de Espiro , Iminas , Lactonas
13.
ACS Appl Bio Mater ; 6(6): 2415-2425, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37272968

RESUMO

This study reports the development of a class of eco-friendly antifouling biocides based on a cyclic dipeptide scaffold, 2,5-diketopiperazine (2,5-DKP). The lead compound cyclo(N-Bip-l-Arg-N-Bip-l-Arg) (1) was synthesized in gram amounts and used to assess the compatibility with an ablation/hydration coating, efficacy against biofouling, and biodegradation. Leaching of 1 from the coating into seawater was assessed via a rotating drum method, revealing relatively stable and predictable leaching rates under dynamic shear stress conditions (36.1 ± 19.7 to 25.2 ± 9.1 ng-1 cm-2 day-1) but low or no leaching under static conditions. The coatings were further analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS), with 1 seen to localize at the surface of the coating in a surfactant-like fashion. When coatings were deployed in the ocean, detectable reductions in biofouling development were measured for up to 11 weeks. After this time, biofouling overwhelmed the performance of the coating, consistent with leaching kinetics. Biodegradation of 1 in seawater was assessed using theoretical oxygen demand and analytical quantification. Masking effects were observed at higher concentrations of 1 due to antimicrobial properties, but half-lives were calculated ranging from 13.4 to 16.2 days. The results can rationally inform future development toward commercial antifouling products.


Assuntos
Incrustação Biológica , Desinfetantes , Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Desinfetantes/química , Peptídeos , Cinética
14.
ACS Med Chem Lett ; 14(6): 802-809, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312845

RESUMO

Small synthetic mimics of cationic antimicrobial peptides represent a promising class of compounds with leads in clinical development for the treatment of persistent microbial infections. The activity and selectivity of these compounds rely on a balance between hydrophobic and cationic components, and here, we explore the activity of 19 linear cationic tripeptides against five different pathogenic bacteria and fungi, including clinical isolates. The compounds incorporated modified hydrophobic amino acids inspired by motifs often found in bioactive marine secondary metabolites in combination with different cationic residues to probe the possibility of generating active compounds with improved safety profiles. Several of the compounds displayed high activity (low µM concentrations), comparable with the positive controls AMC-109, amoxicillin, and amphotericin B. A higher activity was observed against the fungal strains, and a low in vitro off-target toxicity was observed against erythrocytes and HeLa cells, thereby illustrating effective means for tuning the activity and selectivity of short antimicrobial peptides.

15.
Chemistry ; 29(31): e202301235, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37166050

RESUMO

Invited for the cover of this issue are Dan Furkert, Joe Bell-Tyrer and co-workers at the University of Auckland and Victoria University of Wellington. The image depicts a tandem cycloaddition-rearrangement process delivering a diverse range of molecular frameworks from simple precursors. Read the full text of the article at 10.1002/chem.202300261.

16.
Org Lett ; 25(16): 2895-2900, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37067427

RESUMO

Lycibarbarines A-C are spirocyclic alkaloids with a unique tetracyclic framework, consisting of tetrahydroquinoline and spiro-fused oxazine-sugar spiroketal subunits. The first total syntheses of lycibarbarines A-C were achieved over 10 steps (longest linear sequence) each. Through this work, it was discovered that the spiroketal unit of lycibarbarines A-C exhibits unusually high resistance to acid-mediated isomerization and epimerization, likely due to the basic nitrogen atom. As such, the lycibarbarines present an interesting case study in preventing the interconversion of spiroketal isomers, which may prove to be instructive in efforts to obtain nonthermodynamic spiroketal frameworks.

17.
Org Biomol Chem ; 21(19): 4052-4060, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36988402

RESUMO

Depsipeptides are an important class of bioactive natural products, where a growing number of genome-mined structures that display anti-microbial activity are macrocyclic depsipeptides. Chemically, peptide ester (depsipeptide) bond formation often displays low yields, and thereby hampers efforts to access these structures for structure-activity studies. Herein, we present a systematic study of the variables that influence depsipeptide bond formation on-resin, using simplified sequences derived from antibiotic peptides, daptomycin and brevicidine, prepared via Fmoc-based solid-phase synthesis. Our study highlights reaction solvent as the key determinant, where switching the solvent from DMF to DCM in almost all cases increased the amount of depsipeptide product. Limiting the number of amino-acids N-terminal to the reactive alcohol was also noted to significantly improve the acylation efficiency. The impact of different N-terminal and side-chain protecting groups, as well as stereochemistry, was also investigated. Additives to the reaction, such as inclusion of surfactants for esterification of long hydrophobic sequences, did not improve conversion. 6-ClHOBt, often added to improve acylation efficiency, notably decreased the amount of depsipeptide observed. Lastly, no significant difference between polystyrene and Tentagel® (PEG-decorated) resins were found for these sequences.


Assuntos
Daptomicina , Depsipeptídeos , Daptomicina/farmacologia , Solventes , Aminas , Aminoácidos , Depsipeptídeos/química
18.
Org Biomol Chem ; 21(15): 3057-3072, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36975212

RESUMO

Over the last few decades, design and discovery of chemical reactions that enable modification of proteins at pre-determined sites have been the focus of synthetic organic chemists. As an invaluable tool, the site-and chemoselective functionalization of peptides and proteins offers an exciting opportunity for creating high-value multicomponent conjugates with diverse applications in life sciences and pharmacology. In recent years, multiple strategies have emerged that target natural amino acids directly or convert them into other reactive species for further ligations. However, reactivity and selectivity are still key issues in the current state of chemical modification methodologies. Cysteine is one of the least abundant amino acids and exhibits unique chemistry of the thiol or thiolate group which makes it susceptible to a series of post-translational modifications. The thia-Michael "click" addition reactions, which can proceed under facile conditions provide a promising way for thiol-selective modification of cysteine-containing proteins. In this review, we summarize various reactions for cysteine-selective peptide and protein modification, focus on thia-Michael "click" addition reactions, elaborate on their historical perspective and mechanism, and highlight their applications in modifying biomolecules in a site-specific way.


Assuntos
Cisteína , Proteínas , Cisteína/química , Proteínas/química , Aminoácidos/química , Peptídeos , Compostos de Sulfidrila/química
19.
Cancer Immunol Immunother ; 72(7): 2267-2282, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36881133

RESUMO

AIM: We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE: To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS: Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS: Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES: Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS: Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS: A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION: ACTRN12612001101875. Funded by the Health Research Council of New Zealand.


Assuntos
Melanoma , Neoplasias Cutâneas , Masculino , Humanos , Adolescente , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/metabolismo , Peptídeos/metabolismo , Anticorpos/metabolismo , Citocinas/metabolismo , Células Dendríticas , Antígenos de Neoplasias
20.
Chemistry ; 29(31): e202300261, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36849870

RESUMO

Azide-enolate cycloaddition-rearrangements offer potential for rapid access to diverse molecular frameworks from simple precursors. We report here that investigations into the cycloadditions of ester or amide enolates with vinyl azides led to the identification of two reaction processes - direct α-amination of amides and lactams, and the synthesis of ene-γ-lactams from esters. The outcomes of these reactions depended on the fate of key vinyl triazoline intermediates generated in the initial cycloaddition step. Isolation of reaction intermediates in the ene-γ-lactam synthesis revealed the unexpected addition of two enolate equivalents, one of which is later eliminated. Computational studies further suggested an unusual reaction pathway involving direct addition of an enolate to the terminal carbon of the N-vinyl triazoline. In contrast, the α-amination of amides and lactams proceeded by rearrangement of the intermediate triazoline to give an imine, hydrolysis or reduction of which gave access to primary or secondary α-amino amides or lactams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...